DNA methylation profiling Whole genome profiling

- Found 4444 results

Get tips on using Monoclonal Mouse Anti-Human CA 125 (Dako Omnis) Clone M11 to perform Immunohistochemistry Human - CA125

Products Agilent Technologies Monoclonal Mouse Anti-Human CA 125 (Dako Omnis) Clone M11

Get tips on using Monoclonal Mouse Anti-Human p53 Protein (Dako Omnis) Clone DO-7 to perform Immunohistochemistry Human - p53

Products Agilent Technologies Monoclonal Mouse Anti-Human p53 Protein (Dako Omnis) Clone DO-7

Get tips on using PE/Dazzle™ 594 anti-human CD184 (CXCR4) Antibody to perform Flow cytometry Anti-bodies Human - CD184/CXCR4

Products BioLegend PE/Dazzle™ 594 anti-human CD184 (CXCR4) Antibody

Get tips on using Monoclonal Mouse Anti-Human E-Cadherin (Dako Omnis) Clone NCH-38 to perform Immunohistochemistry Human - E-Cadherin

Products Agilent Technologies Monoclonal Mouse Anti-Human E-Cadherin (Dako Omnis) Clone NCH-38

Get tips on using Monoclonal Mouse Anti-Human Ki-67 Antigen (Dako Omnis) Clone MIB-1 to perform Immunohistochemistry Human - Ki-67

Products Agilent Technologies Monoclonal Mouse Anti-Human Ki-67 Antigen (Dako Omnis) Clone MIB-1

Get tips on using Monoclonal Mouse Anti-Human Cytokeratin 7 (Dako Omnis) Clone OV-TL 12/30 to perform Immunohistochemistry Human - CK7

Products Agilent Technologies Monoclonal Mouse Anti-Human Cytokeratin 7 (Dako Omnis) Clone OV-TL 12/30

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human LNCap STEAP1

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human LNCap FGD4

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human LNCap MDK

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human A431 KRAS

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms