siRNA / miRNA gene silencing Rat H19-7

- Found 4540 results

Get tips on using Anti-53BP1 (phospho S25) antibody, rabbit polyclonal to perform Immunohistochemistry 53BP2 phospho (ser-25) - Rabbit IgG Human -NA-

Products Abcam Anti-53BP1 (phospho S25) antibody, rabbit polyclonal

Get tips on using Goat Anti-Rabbit IgG (H + L)-HRP Conjugate to perform Western blot Secondary Antibody - Goat Rabbit Horseradish peroxidase

Products Bio-Rad Laboratories Goat Anti-Rabbit IgG (H + L)-HRP Conjugate

Get tips on using p-Chk2 (Thr 68)-R Antibody, rabbit polyclonal to perform Immunohistochemistry chk2 phospho (Thr 68) - Rabbit IgG Human -NA-

Products Santa Cruz Biotechnology p-Chk2 (Thr 68)-R Antibody, rabbit polyclonal

Get tips on using Anti-Estrogen Receptor (ER) (SP1), Rabbit Monoclonal Primary Antibody to perform Immunohistochemistry Estrogen receptor (ER) - Rabbit Human -NA-

Products Ventana Anti-Estrogen Receptor (ER) (SP1), Rabbit Monoclonal Primary Antibody

Get tips on using pgMAX system-rabbit voltage-dependent calcium channel β2a subunit to perform Protein Expression Prokaryotic cells - E. coli rabbit voltage-dependent calcium channel β2a subunit

Products Manabu Murakami, Department of Pharmacology, Hirosaki University pgMAX system-rabbit voltage-dependent calcium channel β2a subunit

Get tips on using Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 488 conjugate to perform Flowcytometry Secondary Antibody - Goat Rabbit Alexa Fluor 488

Products Thermo Fisher Scientific Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 488 conjugate

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Bacteria Vibrio cholerae

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Bacteria Escherichia coli

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells CHO-K1

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells BHK-21

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms