siRNA / miRNA gene silencing Human HUVEC ATF4

- Found 5172 results

Get tips on using EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit to perform ChIP Human - Glioblastoma cell line

Products Merck Millipore EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit

Get tips on using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003 to perform ChIP Human - Glioblastoma cell line

Products Cell Signaling Technology SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003

Get tips on using EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit to perform ChIP Human - Fibroblast cell lines

Products Merck Millipore EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit

Get tips on using Purified Mouse Anti-E-Cadherin Clone 36/E-Cadherin (RUO) to perform Immunohistochemistry Human - E-Cadherin

Products BD Biosciences Purified Mouse Anti-E-Cadherin Clone 36/E-Cadherin (RUO)

Get tips on using SCGB1A1 antibody (Secretoglobin, Family 1A, Member 1 (Uteroglobin)) (Middle Region) to perform Immunohistochemistry Human - SCGB1A1 /CC10

Products antibodies-online.com SCGB1A1 antibody (Secretoglobin, Family 1A, Member 1 (Uteroglobin)) (Middle Region)

Get tips on using Monoclonal Mouse Anti-Thyroid Transcription Factor (Concentrate) Clone 8G7G3/1 to perform Immunohistochemistry Human - TTF-1

Products Agilent Technologies Monoclonal Mouse Anti-Thyroid Transcription Factor (Concentrate) Clone 8G7G3/1

Get tips on using Purified Mouse Anti-β-Catenin Clone 14/Beta-Catenin (RUO) to perform Immunohistochemistry Human - β-catenin

Products BD Biosciences Purified Mouse Anti-β-Catenin Clone 14/Beta-Catenin (RUO)

Get tips on using SimpleChIP® Plus Enzymatic Chromatin IP Kit (Agarose Beads) #9004 to perform ChIP Human - PANC-1

Products Cell Signaling Technology SimpleChIP® Plus Enzymatic Chromatin IP Kit (Agarose Beads) #9004

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Rat oligodendrocyte precursors (OPCs)

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Mouse fibroblasts from meninges

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms