Western blot LC3B Rabbit Human

- Found 4682 results

Get tips on using Human ICAM-1/CD54 Antibody to perform Western blotting ICAM-1

Products R&D Systems Human ICAM-1/CD54 Antibody

Get tips on using Human Notch-1 Intracellular Domain Antibody to perform Western blotting Notch1

Products R&D Systems Human Notch-1 Intracellular Domain Antibody

Get tips on using Human/Mouse Active Caspase-3 Antibody to perform Western blotting Caspase-3

Products R&D Systems Human/Mouse Active Caspase-3 Antibody

Get tips on using NLRP3/NALP3 (human) monoclonal antibody (Nalpy3-b) to perform Western blotting NLRP3

Products Enzo Life Sciences NLRP3/NALP3 (human) monoclonal antibody (Nalpy3-b)

Get tips on using Purified anti-mouse/rat/human FOXP3 Antibody to perform Western blotting FOXP3

Products BioLegend Purified anti-mouse/rat/human FOXP3 Antibody

When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.

RNA RNA isolation / purification Cells primary rabbit skeletal muscle-derived stem cells

An alternative to culture-based cell death detection is an assessment of other cell viability indicators using fluorescent dyes, including membrane potential and membrane integrity. Live/Dead assays differentiates live and dead cells using membrane integrity as a proxy for cell viability and are based on a fluorescent staining procedure followed by detection using flow cytometry. However, samples preparation for such flow cytometry-based techniques could be challenging. Cell harvesting by trypsinization, mechanical or enzymatic cell disaggregation from tissues, extensive centrifugation steps, may all lead to preferential loss of apoptotic cells. To overcome this strictly follow manufacturers instruction of the detection kit.

Cellular assays Live / Dead assay mammalian cells rabbit bone marrow mesenchymal stem cells

Get tips on using Human/Mouse/Rat Phospho-Akt (S473) Pan Specific Antibody to perform Western blotting AKT

Products R&D Systems Human/Mouse/Rat Phospho-Akt (S473) Pan Specific Antibody

Get tips on using Purified Mouse Anti-Human ZO-1 Clone 1/ZO-1 (RUO) to perform Western blotting ZO-1

Products BD Biosciences Purified Mouse Anti-Human ZO-1 Clone 1/ZO-1 (RUO)

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in the cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time-consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein-specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is, however, not optimal for scaling up.

Proteins Protein Expression Prokaryotic cells E. coli rabbit voltage-dependent calcium channel β2a subunit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms