Protein isolation Tissue

- Found 4928 results

Get tips on using RiboPure™ RNA Purification Kit, bacteria to perform RNA isolation / purification Bacteria - Gram positive Staphylococcus aureus

Products Thermo Fisher Scientific RiboPure™ RNA Purification Kit, bacteria

Get tips on using QIAamp 96 Virus QIAcube HT Kit (5) to perform RNA isolation / purification Viral - SARS-CoV-2

Products Qiagen QIAamp 96 Virus QIAcube HT Kit (5)

Get tips on using QuickGene RNA Cultured Cell HC Kit S to perform RNA isolation / purification Cells - immortalized SH-SY5Y

Products Wako Chemicals QuickGene RNA Cultured Cell HC Kit S

Get tips on using ARCTURUS® PicoPure® DNA Extraction Kit to perform RNA isolation / purification Cells - primary human melanocytes

Products Thermo Fisher Scientific ARCTURUS® PicoPure® DNA Extraction Kit

Get tips on using VWR Life Science RiboZol™ RNA Extraction Reagent to perform RNA isolation / purification Cells - immortalized C2C12

Products VWR VWR Life Science RiboZol™ RNA Extraction Reagent

Get tips on using EasySep™ Human Cord Blood CD34 Positive Selection Kit II to perform Cell Isolation CD34+ cells

Products STEMCELL technologies EasySep™ Human Cord Blood CD34 Positive Selection Kit II

Get tips on using Wizard® Plus SV Minipreps DNA Purification System Technical Bulletin to perform Plasmid Isolation Streptomyces spp

Products Promega Wizard® Plus SV Minipreps DNA Purification System Technical Bulletin

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Rat Brain microvessels

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Mouse CD4+ T

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human MCF-7

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms