siRNA / miRNA gene silencing Human MDA-MB-231

- Found 6977 results

Get tips on using OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence) to perform ROS assay cell type - K562 human leukemia cells

Products Cell Biolabs OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence)

Get tips on using OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence) to perform ROS assay cell type - SH-SY5Y human neuroblastoma

Products Cell Biolabs OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence)

Get tips on using Anti-Collagen Type VII Antibody, clone 32,-VII to perform Immunohistochemistry Collagen VII [II-32] - Mouse Human -NA-

Products Millipore Anti-Collagen Type VII Antibody, clone 32,-VII

Get tips on using PE Annexin V Apoptosis Detection Kit with 7-AAD to perform Apoptosis assay cell type - Human T-cells

Products BioLegend PE Annexin V Apoptosis Detection Kit with 7-AAD

Get tips on using Anti-Estrogen Receptor (ER) (SP1), Rabbit Monoclonal Primary Antibody to perform Immunohistochemistry Estrogen receptor (ER) - Rabbit Human -NA-

Products Ventana Anti-Estrogen Receptor (ER) (SP1), Rabbit Monoclonal Primary Antibody

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Rhesus monkey brain tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse brain tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse cochlaea Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Rat spinal cord Hy5

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Rat saphenous arteries Biotin

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms