a

- Found 7176 results

Get tips on using Viability/Cytotoxicity Assay Kit for Animal Live & Dead Cells to perform Live / Dead assay mammalian cells - FE002-SK2 human skin progenitor cells

Products Biotium Viability/Cytotoxicity Assay Kit for Animal Live & Dead Cells

Get tips on using GeneChip® Human Genome U133 Plus 2.0 Array to perform RNA amplification & labeling Mammalian - RNA amplification and Labeling Human Endometrial Stromal cells Biotin

Products Thermo Fisher Scientific GeneChip® Human Genome U133 Plus 2.0 Array

Get tips on using CD49f (Integrin alpha 6) Monoclonal Antibody (eBioGoH3 (GoH3)), eFluor 450, eBioscience™ to perform Flow cytometry Anti-bodies Human - CD49f/ITGA6

Products eBioscience CD49f (Integrin alpha 6) Monoclonal Antibody (eBioGoH3 (GoH3)), eFluor 450, eBioscience™

Get tips on using Pacific Blue™ anti-mouse Ly-6A/E (Sca-1) Antibody to perform Flow cytometry Anti-bodies Mouse - Ly-6A-E/Sca1

Products BioLegend Pacific Blue™ anti-mouse Ly-6A/E (Sca-1) Antibody

Get tips on using Click-iT™ Plus EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit to perform Cell cycle assay human - FaDu

Products Thermo Fisher Scientific Click-iT™ Plus EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit

Get tips on using Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System to perform Microarray RNA amplification & Labeling - Rhesus monkey brain tissue Biotin

Products Enzo Life Sciences Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 fmnl 2/3

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Rat Deletion INS-1 832/13 Ep300

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion ES (embryonic stem) cells MIR

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion ES (embryonic stem) cells Slx2

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms