Get tips on using CD3e Monoclonal Antibody (145-2C11), Biotin, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD3
Get tips on using CD11c Monoclonal Antibody (N418), PE-Cyanine5.5, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD11c
Get tips on using CD11b Monoclonal Antibody (M1/70.15), PE-Texas Red to perform Flow cytometry Anti-bodies Mouse - CD11b
Get tips on using Granzyme Monoclonal Antibody (NGZB), PE-Cyanine7, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - Granzyme B
Get tips on using Granzyme B Monoclonal Antibody (NGZB), PE, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - Granzyme B
Get tips on using CD184 (CXCR4) Monoclonal Antibody (2B11), Biotin, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD184/CXCR4
Get tips on using F4/80 Monoclonal Antibody (BM8), APC, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - F4/80
Get tips on using CD326 (EpCAM) Monoclonal Antibody (G8.8), APC, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD326/EpCAM
Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).
Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment