DNA isolation / purification Cells Immortalized cell lines

- Found 8544 results

Get tips on using EpiQuik Dnmt3A Assay Kit to perform DNA methylation profiling Whole genome profiling - human peripheral blood mononuclear cells

Products Epigentek EpiQuik Dnmt3A Assay Kit

Get tips on using CometAssay Electrophoresis System II to perform DNA Damage Assay Human Skin Fibroblast Cell (FSK)

Products Bio-Techne CometAssay Electrophoresis System II

Get tips on using LIVE/DEAD Fixable Violet Dead Cell Stain Kit to perform Live / Dead assay mammalian cells - HEK 293

Products Thermo Fisher Scientific LIVE/DEAD Fixable Violet Dead Cell Stain Kit

Get tips on using LIVE/DEAD Fixable Violet Dead Cell Stain Kit to perform Live / Dead assay mammalian cells - mouse splenocytes

Products Thermo Fisher Scientific LIVE/DEAD Fixable Violet Dead Cell Stain Kit

Get tips on using CelLytic™ M to perform Protein isolation Mammalian cells - SK-N-BE(2)-C

Products Sigma-Aldrich CelLytic™ M

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media iPSCs or hESCs differentiation into cerebellar neuroepithelium (NE)

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media hiPSCs or hESCs differentiation to Embryoid body (EB)

Get tips on using CelLytic™ NuCLEAR™ Extraction Kit to perform Protein isolation Mammalian cells - ARPE-19

Products Sigma-Aldrich CelLytic™ NuCLEAR™ Extraction Kit

Get tips on using CelLytic™ NuCLEAR™ Extraction Kit to perform Protein isolation Mammalian cells - HLE-B3

Products Sigma-Aldrich CelLytic™ NuCLEAR™ Extraction Kit

Get tips on using CelLytic™ NuCLEAR™ Extraction Kit to perform Protein isolation Mammalian cells - MLS-1765

Products Sigma-Aldrich CelLytic™ NuCLEAR™ Extraction Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms