Get tips on using MICROBExpress™ Bacterial mRNA Enrichment Kit to perform RNA isolation / purification Bacteria - Gram positive Staphylococcus aureus
Get tips on using MICROBExpress™ Bacterial mRNA Enrichment Kit to perform RNA isolation / purification Bacteria - Gram negative Pseudomonas aeruginosa
Get tips on using SENSE mRNA-Seq Library Prep Kit V2 to perform RNA sequencing Human - Glioblastoma stem-like cells (GSCs)
Get tips on using ATP5A Antibody (51): sc-136178 to perform Western blotting ATP5A
Get tips on using paxillin Antibody (177): sc-136297 to perform Western blotting Paxillin
Get tips on using CD24 Antibody (M1/69): sc-19651 to perform Immunohistochemistry Mouse - CD24
Get tips on using p-NOS3 Antibody (pT495.33): sc-136519 to perform Western blotting eNOS
Get tips on using p53 Antibody (DO-1): sc-126 to perform Western blotting p53
A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes include: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of the enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, the optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with the activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment