Get tips on using ApopTag® Fluorescein In Situ Apoptosis Detection Kit to perform TUNEL assay cell type - A549, NCI-H460, H1299 human lung cancer cells
Get tips on using Gibco™ MEM α, GlutaMAX™ Supplement, no nucleosides to perform Stem cell Differentiation media Human oogonial stem cells differentiation into oocytes
Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - MCF-7 human breast cancer cells
Get tips on using Viability/Cytotoxicity Assay Kit for Animal Live & Dead Cells to perform Live / Dead assay mammalian cells - FE002-SK2 human skin progenitor cells
Get tips on using DMEM/Ham's F-12 liquid medium w/o L-Glutamine to perform Stem cell culture media Human Tendon Stem/Pluripotence cells (TSPCs)
Get tips on using OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence) to perform ROS assay cell type - human umbelical vein endothelial cells (HUVEC)
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment