Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.
Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.
Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.
Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.
Get tips on using CD36 Monoclonal Antibody (eBioNL07 (NL07)), PerCP-eFluor 710, eBioscience™ to perform Flow cytometry Anti-bodies Human - CD36/CB38
Get tips on using Ambion™ RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE to perform RNA isolation / purification Tissue - Human Kidney
Get tips on using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® to perform RNA sequencing Human - MDA-MB-231
Get tips on using Click-iT™ EdU Pacific Blue™ Flow Cytometry Assay Kit to perform Cell cycle assay human - MCF 10A
Get tips on using Click-iT™ EdU Pacific Blue™ Flow Cytometry Assay Kit to perform Cell cycle assay human - PANC-1
Get tips on using Click-iT™ Plus EdU Pacific Blue™ Flow Cytometry Assay Kit to perform Cell cycle assay human - A549
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment