RNA isolation / purification Cells Cancer cell lines

- Found 9034 results

Get tips on using NEBNext® Multiplex Small RNA Library Prep Set for Illumina® to perform RNA sequencing Human - HEK293T

Products New England BioLabs NEBNext® Multiplex Small RNA Library Prep Set for Illumina®

Cellular assays Cell line authentication Peripheral blood lymphocytes

Get tips on using Mesenchymal Stem Cell Growth Medium to perform Stem cell culture media Human bone mesenchymal stem cell (BMSC)

Products Cyagen US Inc. Mesenchymal Stem Cell Growth Medium

Get tips on using NEBNext® Multiplex Small RNA Library Prep Set for Illumina® to perform RNA sequencing Mouse - Neuro 2a

Products New England BioLabs NEBNext® Multiplex Small RNA Library Prep Set for Illumina®

Get tips on using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® to perform RNA sequencing Human - SH-SY5Y

Products New England BioLabs NEBNext® Ultra™ RNA Library Prep Kit for Illumina®

Get tips on using Cell Proliferation Kit I (MTT) to perform Cell cytotoxicity / Proliferation assay cell type - LTEP-a-2 lung adenocarcenoma

Products Sigma-Aldrich Cell Proliferation Kit I (MTT)

Get tips on using CellTiter-Glo® Luminescent Cell Viability Assay to perform Cell cytotoxicity / Proliferation assay cell type - HT-22

Products Promega CellTiter-Glo® Luminescent Cell Viability Assay

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Rhesus monkey brain tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Bovine olfactory nasal tissues Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Human brain tissue Cyanine 3

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms