ChIP H3K27me3 Human Rat

- Found 4698 results

Get tips on using BV421 Rat Anti-Mouse Siglec-F to perform Flow cytometry Anti-bodies Mouse - Siglec F

Products BD Biosciences BV421 Rat Anti-Mouse Siglec-F

Get tips on using PE anti-mouse/rat CD29 Antibody to perform Flow cytometry Anti-bodies Mouse - CD29/β1-Integrin

Products BioLegend PE anti-mouse/rat CD29 Antibody

Get tips on using PE Rat Anti-Mouse Ly-6G to perform Flow cytometry Anti-bodies Mouse - Ly6C/Gr-1/Ly6G

Products BD Biosciences PE Rat Anti-Mouse Ly-6G

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Rat BMSC

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Rat TSPCs

Get tips on using Rat Kidney injury molecule 1,Kim-1 ELISA Kit to perform ELISA Rat - KIM-1

Products Cusabio Rat Kidney injury molecule 1,Kim-1 ELISA Kit

Get tips on using Rat TIM-1/KIM-1/HAVCR Quantikine ELISA Kit to perform ELISA Rat - KIM-1

Products R&D Systems Rat TIM-1/KIM-1/HAVCR Quantikine ELISA Kit

Get tips on using Mouse/Rat IGF-I/IGF-1 Quantikine ELISA Kit to perform ELISA Rat - IGF-I

Products R&D Systems Mouse/Rat IGF-I/IGF-1 Quantikine ELISA Kit

Get tips on using Rat IL-1 beta/IL-1F2 Quantikine ELISA Kit to perform ELISA Rat - IL-1 beta

Products R&D Systems Rat IL-1 beta/IL-1F2 Quantikine ELISA Kit

Get tips on using Mouse/Rat Osteopontin (OPN) Quantikine ELISA Kit to perform ELISA Mouse - OPN

Products R&D Systems Mouse/Rat Osteopontin (OPN) Quantikine ELISA Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms