ChIP H3K27me3 Mouse Canine

- Found 2520 results

Get tips on using Mouse Lipocalin-2 ELISA Kit (NGAL) (ab199083) to perform ELISA Mouse - NGAL/LCN2

Products Abcam Mouse Lipocalin-2 ELISA Kit (NGAL) (ab199083)

Get tips on using Mouse KIM1 ELISA Kit (TIM-1) (ab119596) to perform ELISA Mouse - KIM-1

Products Abcam Mouse KIM1 ELISA Kit (TIM-1) (ab119596)

Get tips on using Mouse IGF-1 PicoKine™ ELISA Kit to perform ELISA Mouse - IGF-I

Products BosterBio Mouse IGF-1 PicoKine™ ELISA Kit

Get tips on using Mouse Heme Oxygenase 1 ELISA Kit (ab204524) to perform ELISA Mouse - HO-1

Products Abcam Mouse Heme Oxygenase 1 ELISA Kit (ab204524)

Get tips on using Rat/Mouse Cytochrome c Quantikine ELISA Kit to perform ELISA Mouse - Cytochrome c

Products R&D Systems Rat/Mouse Cytochrome c Quantikine ELISA Kit

Get tips on using Mouse BMP-2 PicoKine™ ELISA Kit to perform ELISA Mouse - BMP-2

Products BosterBio Mouse BMP-2 PicoKine™ ELISA Kit

ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.

Proteins ELISA Mouse Chitinase-3-Like Protein-1 (CHI3L1) or YKL-40

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Mouse lung tissue

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Mouse cardiac tissue

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Mouse liver tissue

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms