rna-isolation-purification-tissue-human-mouth

- Found 7738 results

Get tips on using QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn to perform Site Directed Mutagenesis (SDM) Human - Deletion PC-3 AGR2

Products Agilent Technologies QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn

Get tips on using QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn to perform Site Directed Mutagenesis (SDM) Human - Deletion MCF-7 AHR

Products Agilent Technologies QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn

Get tips on using QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn to perform Site Directed Mutagenesis (SDM) Human - Point mutation H1299 PDHA1

Products Agilent Technologies QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - SH-SY5Y Human neuroblastoma

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

Get tips on using QIA33 | FragEL™ DNA Fragmentation Detection Kit, Colorimetric - TdT Enzyme to perform Apoptosis assay cell type - Human endometrial stromal cells

Products Millipore QIA33 | FragEL™ DNA Fragmentation Detection Kit, Colorimetric - TdT Enzyme

Get tips on using Anti-Cytokeratin AE1/AE3 Antibody, recognizes acidic & basic cytokeratins, clone AE1/AE3 to perform Flow cytometry Anti-bodies Human - Keratin

Products Sigma-Aldrich Anti-Cytokeratin AE1/AE3 Antibody, recognizes acidic & basic cytokeratins, clone AE1/AE3

Get tips on using Click-iT™ Plus EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit to perform Cell cycle assay human - FaDu

Products Thermo Fisher Scientific Click-iT™ Plus EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Rat H9c2 AIF/Pdcd8

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Rat B35 cIAP1/BIRC2

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Rat B35 cIAP2/BIRC3

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms