siRNA / miRNA gene silencing Human T47-D

- Found 7773 results

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - rat tendon-derived stem cells

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

Get tips on using Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham to perform Stem cell Differentiation media hiPSCs or hESCs differentiation to Embryoid body (EB)

Products Sigma-Aldrich Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham

Get tips on using Corning® 1L DMEM (Dulbecco’s Modified Eagle’s Medium)/F12 50:50 Mix to perform 3D Cell Culture Media Mouse fallopian organoids

Products Corning Corning® 1L DMEM (Dulbecco’s Modified Eagle’s Medium)/F12 50:50 Mix

Get tips on using DMEM/F12 - Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 to perform Stem cell culture media Ovarian cancer stem cells (Caov3, 3AO, SKOV3)

Products Biological Industries DMEM/F12 - Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12

Get tips on using Gyros IncSupplier Diversity Partner REXXIP HN BUFFER 25 ML PER VI DFS Item to perform Protein isolation Bacteria - Borrelia burgdorferi

Products Fisher Scientific Gyros IncSupplier Diversity Partner REXXIP HN BUFFER 25 ML PER VI DFS Item

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Rat Brain microvessels

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Mouse CD4+ T

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Mouse Liver

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Mouse 3T3-L1 cells

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Mouse NIH3T3

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms