DNA methylation profiling Gene specific profiling HepG2

- Found 4733 results

Isolating DNA from tissues and paraffin-embedded tissue samples can be challenging as double-stranded DNA is physically fragile and highly susceptible to exo- and endonucleases. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in the presence of DNAse inhibitors. Further, extracting DNA from the nucleus need specific methods by combining physical, mechanical and chemical lysis approaches,

DNA DNA isolation / purification Cells Primary cells Pseudomyxoma peritonei (PMP) cells

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human MDA-MB-231 bcl-2

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human MDA-MB-231 DLX-2

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human A431 Rab Coupling Protein (RCP)

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human Caco-2 14‐3‐3ζ

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human H1299 Rab Coupling Protein (RCP)

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human MIA PaCa-2 PLK-1

DNA damage assay is a standard method for determining in-vivo/in-vitro genotoxicity by measuring the breaks in the DNA chain of animal and plant cells. Initial DNA damage leads to cell cycle arrest and, at the final stages, leads to induction of senescence or cell death (apoptosis, necrosis, autophagy, or mitotic catastrophe). Detection of DNA damage from mild to moderate to severe is challenging when studying genotoxicity in the pool of cells. It is favorable to use DNA damage assay kits available for prominent identification of the extent of damage in the analysis.

Cellular assays DNA Damage Assay U266

DNA damage assay is a standard method for determining in-vivo/in-vitro genotoxicity by measuring the breaks in the DNA chain of animal and plant cells. Initial DNA damage leads to cell cycle arrest and, at the final stages, leads to induction of senescence or cell death (apoptosis, necrosis, autophagy, or mitotic catastrophe). Detection of DNA damage from mild to moderate to severe is challenging when studying genotoxicity in the pool of cells. It is favorable to use DNA damage assay kits available for prominent identification of the extent of damage in the analysis.

Cellular assays DNA Damage Assay HT1080

DNA damage assay is a standard method for determining in-vivo/in-vitro genotoxicity by measuring the breaks in the DNA chain of animal and plant cells. Initial DNA damage leads to cell cycle arrest and, at the final stages, leads to induction of senescence or cell death (apoptosis, necrosis, autophagy, or mitotic catastrophe). Detection of DNA damage from mild to moderate to severe is challenging when studying genotoxicity in the pool of cells. It is favorable to use DNA damage assay kits available for prominent identification of the extent of damage in the analysis.

Cellular assays DNA Damage Assay HeLa

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms