siRNA / miRNA gene silencing Human MDA-MB-453

- Found 6955 results

Get tips on using SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005 to perform ChIP Mouse - Kidney

Products Cell Signaling Technology SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005

Get tips on using SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005 to perform ChIP Mouse - Brain

Products Cell Signaling Technology SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005

Get tips on using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003 to perform ChIP Mouse - 3T3-L1 cells

Products Cell Signaling Technology SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003

Get tips on using LC3A/B (D3U4C) XP® Rabbit mAb #12741 to perform Autophagy assay cell type - HK-2 cells

Products Cell Signaling Technology LC3A/B (D3U4C) XP® Rabbit mAb #12741

Get tips on using LC3A/B (D3U4C) XP® Rabbit mAb #12741 to perform Autophagy assay cell type - HK-2 cells

Products Cell Signaling Technology LC3A/B (D3U4C) XP® Rabbit mAb #12741

Get tips on using LC3A/B (D3U4C) XP® Rabbit mAb #12741 to perform Autophagy assay cell type - HK-2 cells

Products Cell Signaling Technology LC3A/B (D3U4C) XP® Rabbit mAb #12741

Get tips on using Live and Dead Cell Assay (Abcam) to perform Live / Dead assay mammalian cells - rabbit bone marrow mesenchymal stem cells

Products Abcam Live and Dead Cell Assay (Abcam)

Get tips on using MagNA Pure Compact Nucleic Acid Isolation Kit I to perform DNA isolation / purification Bacteria - Gram negative Enterobacteriaceae

Products Roche Lifesciences MagNA Pure Compact Nucleic Acid Isolation Kit I

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Tissue

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Cell lines

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms