reporter-gene-assay-luciferase-bhk-21-baby-hamster-kidney-cells

- Found 7741 results

Get tips on using HER2/ErbB2 (29D8) Rabbit mAb #2165 to perform Western blotting HER2

Products Cell Signaling Technology HER2/ErbB2 (29D8) Rabbit mAb #2165

Get tips on using pET-21a(+) DNA to perform Protein expression and purification Bacteria - Escherichia coli Prefoldin (PFD)

Products Merck Millipore pET-21a(+) DNA

Get tips on using Mucin 5AC Antibody (45M1): sc-21701 to perform Immunohistochemistry Human - Muc-5AC

Products Santa Cruz Biotechnology Mucin 5AC Antibody (45M1): sc-21701

Get tips on using P-Cadherin (C13F9) Rabbit mAb #2189 to perform Western blotting P-Cadherin

Products Cell Signaling Technology P-Cadherin (C13F9) Rabbit mAb #2189

Get tips on using MMP-9 Antibody (2C3): sc-21733 to perform Western blotting MMP-9

Products Santa Cruz Biotechnology MMP-9 Antibody (2C3): sc-21733

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation hATCB

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation SOX2

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation interferon-γ promoter

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation ESR1

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation REPRIMO

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms