Site Directed Mutagenesis (SDM) Human Point mutation THP-1

- Found 11482 results

Get tips on using CytoTune™-iPS 2.0 Sendai Reprogramming Kit to perform Stem cell Differentiation media Differentiation of RPE cells into hiPSC cells

Products Thermo Fisher Scientific CytoTune™-iPS 2.0 Sendai Reprogramming Kit

Get tips on using D-MEM (High Glucose) with L-Glutamine and Phenol Red to perform Stem cell culture media Mouse pericytes

Products Fujifilm Wako Chemicals Europe Gmbh D-MEM (High Glucose) with L-Glutamine and Phenol Red

Get tips on using EBMTM-2 Endothelial Cell Growth Basal Medium-2 to perform Stem cell culture media Cord blood-derived endothelial cells(hCBiPS2)

Products Lonza EBMTM-2 Endothelial Cell Growth Basal Medium-2

Get tips on using EGMTM -2 MV Microvascular Endothelial Cell Growth Medium-2 BulletKitTM to perform Stem cell Differentiation media hMSCs differentiation into pericytes

Products Lonza EGMTM -2 MV Microvascular Endothelial Cell Growth Medium-2 BulletKitTM

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - rat tendon-derived stem cells

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

Get tips on using MEMα with L-Glutamine, Phenol Red, Sodium Pyruvate and Nucleosides to perform Stem cell Differentiation media mPericytes differentiation into Osteogenic cells

Products Fujifilm Wako Chemicals Europe Gmbh MEMα with L-Glutamine, Phenol Red, Sodium Pyruvate and Nucleosides

Get tips on using Corning® 500 mL MEM (Minimum Essential Medium) Alpha Medium to perform Stem cell culture media Cord blood-derived endothelial cells(hCBiPS2)

Products Corning Corning® 500 mL MEM (Minimum Essential Medium) Alpha Medium

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation DH10Bac (Bacmid)

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation E. coli DH5α

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation S. cerevisiae

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms