Site Directed Mutagenesis (SDM) Monkey Deletion COS-7

- Found 5850 results

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi has been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining the efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human Neuroblastoma cells (SH-SY5Y) Beclin 1

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi has been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining the efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Rat WKY Salusin-β

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi has been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining the efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Rat H9c2 salusin-β

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Mouse Prostate cancer cell lines (DU145 and PC3) CD24 lentiviral particles

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification Coloremetric

TUNEL assay is the cell death detection method where the biochemical marker of apoptosis is DNA fragmentation. The assay involves the microscopical detection of generated DNA fragments with free 3'-hydroxyl residues. in apoptotic cells using enzyme terminal deoxynucleotidyl transferase (TdT) which adds biotinylated nucleotides at the site of DNA breaks. Major challenges of this method involve proper access of the enzyme which could be hampered by poor permeabilization and/or excessive fixation with cross-linking fixative (common with archival tissue). This issue can be resolved by optimizing the incubation time with Proteinase K or CytoninTM.

Cellular assays TUNEL assay cell type Rat pulmonary arterial smooth muscle cells

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification qPCR

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification Fuorimetric

Bacterial culture is a process of letting bacteria multiply in a controlled fashion (temperature, humidity, oxygen content or shaking), in a predetermined culture medium (antibiotic resistance to obtain homogenous clones). It is an important step, especially during cloning, as a single cell can be grown homogeneously (on semi-solid or in liquid conditions) to obtain colonies. As mentioned, bacteria can be cultured in broth cultures (Luria broth or LB) or Petri dishes (Agar plates). A specific antibiotic can be added to the broth or agar plates in order to grow bacteria which have the gene insert conferring its resistance to that antibiotic. Following points are necessary to consider for optimal growth conditions: 1. In general, most bacteria grow well at 37C, but there are some strains which require growth temperatures between 25-30C. 2. It is ideal in broth cultures to fill the flask to ⅓ or less of the total flask volume for optimal aerobic growth. 3. Shaking speeds between 140-180 rpm are appropriate to ensure aeration and that the cells are surrounded by fresh media, and do not settle.

Cell culture media Bacterial cell culture media Listeria monocytogens

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human SMMC-7721

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms