Protein Expression Prokaryotic cells Brevibacillus choshinensis SP3

- Found 7324 results

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Yeast Spathaspora passalidarum

Get tips on using Flp-In™ T-REx™ 293 Cell Line to perform Protein expression and purification Mammalian cells - HeLa ChaC1

Products Thermo Fisher Scientific Flp-In™ T-REx™ 293 Cell Line

Get tips on using pwPICZalpha-DT390-bi-pIL-2-Gly to perform Protein Expression Eukaryotic cells - P. pastoris Porcine IL-2 fusion toxins

Products Zhirui Wang, Transplantation Biology Research Center, Massachuse pwPICZalpha-DT390-bi-pIL-2-Gly

Get tips on using pFastBac-GP67-H6HA1-His-RhPV-IRES-EGFP to perform Protein Expression Eukaryotic cells - S. frugiperda HA1 of H6N1 AIV

Products Rong-Huay Juang, Institute of Biotechnology, National Taiwan Uni pFastBac-GP67-H6HA1-His-RhPV-IRES-EGFP

Get tips on using NucleoSpin® RNA/Protein to perform Protein isolation Mammalian cells - Human eutopic endometrial stromal cells

Products Macherey Nagel NucleoSpin® RNA/Protein

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse liver tissue Cyanine-3-CTP

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Bacteria Synechocystis

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Bacteria Anabaena

RNA siRNA / miRNA gene silencing Human Primary Endometrial Stromal Cells IGFBP1 (Insuline-like growth factor binding protein-1) Lipid

Get tips on using Flp-In™ T-REx™ 293 Cell Line to perform Protein expression and purification Mammalian cells - CAL-51 BRCA1

Products Thermo Fisher Scientific Flp-In™ T-REx™ 293 Cell Line

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms