DNA damage assay is a standard method for determining in-vivo/in-vitro genotoxicity by measuring the breaks in the DNA chain of animal and plant cells. Initial DNA damage leads to cell cycle arrest and, at the final stages, leads to induction of senescence or cell death (apoptosis, necrosis, autophagy, or mitotic catastrophe). Detection of DNA damage from mild to moderate to severe is challenging when studying genotoxicity in the pool of cells. It is favorable to use DNA damage assay kits available for prominent identification of the extent of damage in the analysis.
Get tips on using Anti-TGF beta 1 antibody [TB21] (ab190503) to perform Western blotting TGF-beta1
Get tips on using Anti-AP-1 antibody produced in rabbit to perform Western blotting C-Jun
Get tips on using Mouse IGF-1 PicoKine™ ELISA Kit to perform ELISA Mouse - IGF-I
Get tips on using Rat IGF-1 PicoKine™ ELISA Kit to perform ELISA Rat - IGF-I
Get tips on using CD279 (PD-1) Monoclonal Antibody (J43), PE, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD279/PD-1
Get tips on using CD31 (PECAM-1) Monoclonal Antibody (390), Biotin, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD31/Pecam-1
Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.
When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.
When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment