DNA Damage Assay Human bronchial epithelial cells (hBE)

- Found 9142 results

Get tips on using Alexa Fluor® 488 Annexin V/Dead Cell Apoptosis Kit to perform Necrosis HeLa

Products Thermo Fisher Scientific Alexa Fluor® 488 Annexin V/Dead Cell Apoptosis Kit

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Rat IEC-6 Cationic lipid based

Bacterial culture is a process of letting bacteria multiply in a controlled fashion (temperature, humidity, oxygen content or shaking), in a predetermined culture medium (antibiotic resistance to obtain homogenous clones). It is an important step, especially during cloning, as a single cell can be grown homogeneously (on semi-solid or in liquid conditions) to obtain colonies. As mentioned, bacteria can be cultured in broth cultures (Luria broth or LB) or Petri dishes (Agar plates). A specific antibiotic can be added to the broth or agar plates in order to grow bacteria which have the gene insert conferring its resistance to that antibiotic. Following points are necessary to consider for optimal growth conditions: 1. In general, most bacteria grow well at 37C, but there are some strains which require growth temperatures between 25-30C. 2. It is ideal in broth cultures to fill the flask to ⅓ or less of the total flask volume for optimal aerobic growth. 3. Shaking speeds between 140-180 rpm are appropriate to ensure aeration and that the cells are surrounded by fresh media, and do not settle.

Cell culture media Bacterial cell culture media Lactobacillus helveticus

Bacterial culture is a process of letting bacteria multiply in a controlled fashion (temperature, humidity, oxygen content or shaking), in a predetermined culture medium (antibiotic resistance to obtain homogenous clones). It is an important step, especially during cloning, as a single cell can be grown homogeneously (on semi-solid or in liquid conditions) to obtain colonies. As mentioned, bacteria can be cultured in broth cultures (Luria broth or LB) or Petri dishes (Agar plates). A specific antibiotic can be added to the broth or agar plates in order to grow bacteria which have the gene insert conferring its resistance to that antibiotic. Following points are necessary to consider for optimal growth conditions: 1. In general, most bacteria grow well at 37C, but there are some strains which require growth temperatures between 25-30C. 2. It is ideal in broth cultures to fill the flask to ⅓ or less of the total flask volume for optimal aerobic growth. 3. Shaking speeds between 140-180 rpm are appropriate to ensure aeration and that the cells are surrounded by fresh media, and do not settle.

Cell culture media Bacterial cell culture media Helicobacter pylori

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse RAW264.7 Prkaa1

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse RAW264.7 HDAC5

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse RAW264.7 PU.1

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse RAW264.7 STAT3

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse RAW264.7 Dusp3

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse RAW264.7 CD98

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms