siRNA / miRNA gene silencing Human M245

- Found 5127 results

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human HEK 293T CAPN5- (Calpains) cationic lipid based

Get tips on using 14-3-3ζ siRNA(h) to perform siRNA / miRNA gene silencing Human - Caco-2 14‐3‐3ζ

Products Santa Cruz Biotechnology 14-3-3ζ siRNA(h)

Get tips on using MISSION® esiRNA_ human CCL2 to perform siRNA / miRNA gene silencing Human - U251 CCL2

Products Sigma-Aldrich MISSION® esiRNA_ human CCL2

Get tips on using Silencer® Select Negative Control No 1 siRNA to perform siRNA / miRNA gene silencing Human - siRNA negative control Lipid

Products Thermo Fisher Scientific Silencer® Select Negative Control No 1 siRNA

Get tips on using Silencer® Select GLO-1 siRNA to perform siRNA / miRNA gene silencing Human - Primary Human Aortic Endothelial Cells GLO-1 Lipid

Products Thermo Fisher Scientific Silencer® Select GLO-1 siRNA

Get tips on using SNAI 1 siRNA and shRNA Plasmids (h) to perform siRNA / miRNA gene silencing Human - MDA-MB-468 SNAI 1

Products Santa Cruz Biotechnology SNAI 1 siRNA and shRNA Plasmids (h)

Get tips on using SNAI 1 siRNA and shRNA Plasmids (h) to perform siRNA / miRNA gene silencing Human - MDA-MB-231 SNAI 1

Products Santa Cruz Biotechnology SNAI 1 siRNA and shRNA Plasmids (h)

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human Islets of langerhans Negative control (scrambled) lentiviral particles

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human Neuroblastoma cells (SH-SY5Y) Connexin 43 lentiviral particles
Fenozol Product

Get tips on using Fenozol to perform siRNA / miRNA gene silencing Human - BOSC23

Products A&A Biotechnology Fenozol

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms