Protein expression and purification Bacteria DH10Bac™

- Found 8390 results

Get tips on using NucleoSpin® RNA/Protein to perform RNA isolation / purification Tissue - Rat Hippocampus

Products Macherey Nagel NucleoSpin® RNA/Protein

Get tips on using NucleoSpin® RNA/Protein to perform RNA isolation / purification Tissue - Human Cornea

Products Macherey Nagel NucleoSpin® RNA/Protein

Get tips on using CelLytic™ M to perform Protein isolation Mammalian cells - HaCaT

Products Sigma-Aldrich CelLytic™ M

Get tips on using CelLytic™ M to perform Protein isolation Mammalian cells - HepG2

Products Sigma-Aldrich CelLytic™ M

Get tips on using CelLytic™ M to perform Protein isolation Mammalian cells - Huh7

Products Sigma-Aldrich CelLytic™ M

Get tips on using CelLytic™ M to perform Protein isolation Mammalian cells - HEK293T

Products Sigma-Aldrich CelLytic™ M
pET-32c Product

Get tips on using pET-32c to perform Protein Expression Prokaryotic cells - E. coli rpf-like protein

Products R Verma, Bacteriology and Mycology Division, Mycobacteria Labora pET-32c

Get tips on using Gibco™Neurobasal™ Medium to perform Stem cell culture media h-medial pallium induction and culture

Products Thermo Fisher Scientific Gibco™Neurobasal™ Medium

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation E. coli DH5α

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation S. cerevisiae

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms