Protein Expression Eukaryotic cells Y. lipolytica

- Found 7230 results

Get tips on using PRO-PREP™ Protein Extraction Solution (C/T) to perform Protein isolation Mammalian cells - Mouse Epididymal fat

Products iNtRON Biotechnology PRO-PREP™ Protein Extraction Solution (C/T)

Get tips on using SurePrint G3 Human Gene Expression 8x60K v2 Microarray Kit to perform Microarray Human - PCOS

Products Agilent Technologies SurePrint G3 Human Gene Expression 8x60K v2 Microarray Kit

Get tips on using Unstained Protein Standards to perform Protein Ladder Unstained

Products Bio-Rad Laboratories Unstained Protein Standards

Get tips on using Prestained Protein Standards to perform Protein Ladder Prestained

Products Bio-Rad Laboratories Prestained Protein Standards

Get tips on using pPIC9K Pichia Vector to perform Protein expression and purification Yeast - Pichia pastoris N-APP

Products Thermo Fisher Scientific pPIC9K Pichia Vector

Get tips on using M-PER™ Mammalian Protein Extraction Reagent to perform Protein isolation Mammalian cells - SK-N-BE(2)-C

Products Thermo Fisher Scientific M-PER™ Mammalian Protein Extraction Reagent
pCW-LIC Product

Get tips on using pCW-LIC to perform Protein expression and purification Bacteria - Escherichia coli Fbxo7

Products Addgene pCW-LIC

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Human Cells HT-1376 GLUT1

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with the desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Human Cells HT-1376 ROCK2

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Human Cells HT-1376 CD74

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms