pAC2-dual-dCas9VP48-sgExpression

CRISPR Human - Activation SOX2

Experiment
CRISPR Human - Activation SOX2
Product
pAC2-dual-dCas9VP48-sgExpression from Addgene
Manufacturer
Addgene

Protocol tips

Protocol tips
For goldengate reaction, there is a low and a high concentration mixture available for T4 ligase. For single inserts, the low concentration is just fine, but the follow-up article on golden gate cloning (PMID: 19436741) found that the high-concentration T4 was better for multiple insert cloning.

Publication protocol

Cloning
A two-step fusion PCR was performed to amplify Cas9 Nickase ORF without stop codon from the pX335 vector (Addgene: 42335), incorporate H840A mutation, EcoRI-AgeI restriction site on the 5′ end as well as an FseI site on the 3′ end (EcoRI-AgeI-dCas9-FseI fragment). The 3× minimal VP16 activation domain coding fragment (VP48) was excised from a vector (Addgene: 20342) containing NLSM2rtTA coding sequence by FseI and EcoRI digestion (FseI-TA-EcoRI fragment). The two fragments were ligated into pCR8/GW/TOPO (Invitrogen) vector digested by EcoRI to generate a gateway compatible dCas9VP48 coding plasmid. The dCas9VP48 coding sequence was subsequently excised and cloned into pX355 vector (Addgene: 42335) by AgeI-EcoRI digestion to replace dCas9 Nickase to create a chimeric vector that expresses both the dCas9VP48 and the sgRNA (dCas9VP48-U6-sgRNA-chimeric). sgRNA spacers were cloned into the BbsI-digested vector by annealing oligos as previously described14. For construction of dCas9VP160, a gBlocks gene fragment containing coding sequence for 10 tandem repeats of VP16 domains separated by Glycine-Serine (GS) linker was ordered from Integrated DNA Technology (IDT) and amplified by PCR primers containing FseI and EcoRI sites to replace VP48 fragment in pCR8-dCas9VP48 to generate pCR8-dCas9VP160. A pmax-DEST gateway destination vector was constructed by replacing GFP coding sequence in pmaxGFP (Clontech) by a gateway destination cassette (Invitrogen). The pCR8-dCas9VP160 vector was then recombined with pmax-DEST via LR clonase-mediated recombination to create pmax-dCas9VP160 expression plasmid. For the endogenous gene experiments, sgRNAs were cloned by oligo cloning method mentioned above into a PBneo-sgRNA expression vector sgRNA target sequences, oligos for cloning are listed in Supplementary information, Table S1. Plasmids are deposited on Addgene and additional information is available at http://www.crispr-on.org



Full paper   Login or join for free to view the full paper.

Reviews

pAC2-dual-dCas9VP48-sgExpression from Addgene has not yet been reviewed for this experiment

We'd love it if you would be the first to write a review!

Discussion

Discussion

4 years ago

Author: Milena Alexeyeva Russian Federation

DNA insert using CRISPR

I would like to excise a large strand of DNA and insert a new one using CRISPR. My problem is that my strand will be a little over 1kb and I am not sure if this is going to be a limiting factor. Also, how long should the homology arms be for a region of this size?

Share your thoughts or question with experts in your field by adding a discussion!

Papers

Check out relevant papers found by Labettor's AI that are relevant for performing CRISPR Human - Activation SOX2 using pAC2-dual-dCas9VP48-sgExpression from Addgene.

View full paper   Login or join for free to view the full paper.

Manufacturer protocol

Download the product protocol from Addgene for pAC2-dual-dCas9VP48-sgExpression below.

Download PDF Download manufacturer protocol

Videos

Check out videos that might be relevant for performing CRISPR Human - Activation SOX2 using pAC2-dual-dCas9VP48-sgExpression from Addgene. Please note that these videos are representative and steps or experiment specific processes must be kept in mind to expect desired results.

We haven't found any additional videos for this experiment / product combination yet.

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms