pSUPER.retro.neo+gfp vector- Syn G (exon 3) siRNA

shRNA gene silencing Mouse - RGC-5 Syn G (Exon 3)

Experiment
shRNA gene silencing Mouse - RGC-5 Syn G (Exon 3)
Product
pSUPER.retro.neo+gfp vector- Syn G (exon 3) siRNA from Oligoengine
Manufacturer
Oligoengine

Protocol tips

Protocol tips
The inhibition of Syn G expression by siRNA was carried out by vector-based RNA interference approaches. pSUPER.retro.neo+gfp was used as a vector (Oligoengine, Inc., Seattle, WA). This retroviral vector ensures efficient siRNA expression using H1 RNA polymerase III promoter, which drives the endogenous production of siRNA. For oligonucleotide design the software from Dharmacon and Whitehead Institute were used. The designed oligonucleotides correspond to different parts of the rat Syn G gene, including exons 3 and 4 (E3 and E4) and 3′-untranslated region (3′-UTR) (Table 1). As a control, scrambled (Scr) nucleotide sequence corresponding to E3 was used. The scrambled sequence has the same nucleotide composition as the input sequence and does not possess a significant homology to other genes, according to BLAST analysis. Each double strand oligo contained the BglII site on 5′- and 3′-end on the HindIII. The oligonucleotides for candidate siRNAs were analyzed by BLAST search to exclude considerable similarity to other genes. Oligonucleotides were inserted into pSUPER vector by ligation using BglII and HindIII sites as recommended by the manufacturer (Oligoengine, Inc.). Further steps (annealing, linearization, cloning the annealed oligonucleotides into the vector, and transformation of Escherichia coli) were performed according to the manufacturer's protocols. The correctness of all constructs was confirmed by sequencing. On the next step, pSUPER.retro.plasmids were transfected into 293T cells together with a packaging plasmid pCLEco (Imgenex, San Diego, CA) using FUGENE-HD transfection reagent (Roche). Transfection into 293T cells was performed following the manufacturer's protocol. The cells (105/ml) were split into 60-mm plates with Dulbecco's modified Eagle's medium and grown overnight. Before transfection the media was changed to a fresh one. DNA was incubated with FUGENE-HD (ratio 3:2, 30 min, room temperature) to form a complex. Each mixture contained 1.5 μg of pSUPER-plasmid DNA and 0.5 μg of pCLeo DNA. After incubation the mixture was added to cells in the media containing fetal bovine serum without antibiotics. In 48 h the fluorescence was analyzed using the Bio-Rad Microradians Plus confocal system coupled to a Nikon Eclipse inverted microscope TE300 (Melville, NY). The efficiency of transfection was ∼50%. The media from the 293T cells containing the virus together with 10 μg/ml of Polybrene (Millipore Corporation, Billerica, MA) were used for the infection of RGC-5. After 24 h of growth the efficiency of infection determined as described above was ∼30%. Because pSUPER plasmid contained green fluorescent protein encoding nucleotide sequence, we used flow cytometry (BD-FACSAria Cell Sorting System, BD Biosciences) to enrich the population of cell containing siRNA.

Publication protocol

The inhibition of Syn G expression by siRNA was carried out by vector-based RNA interference approaches. pSUPER.retro.neo+gfp was used as a vector (Oligoengine, Inc., Seattle, WA). This retroviral vector ensures efficient siRNA expression using H1 RNA polymerase III promoter, which drives the endogenous production of siRNA. For oligonucleotide design the software from Dharmacon and Whitehead Institute were used. The designed oligonucleotides correspond to different parts of the rat Syn G gene, including exons 3 and 4 (E3 and E4) and 3′-untranslated region (3′-UTR) (Table 1). As a control, scrambled (Scr) nucleotide sequence corresponding to E3 was used. The scrambled sequence has the same nucleotide composition as the input sequence and does not possess a significant homology to other genes, according to BLAST analysis. Each double strand oligo contained the BglII site on 5′- and 3′-end on the HindIII. The oligonucleotides for candidate siRNAs were analyzed by BLAST search to exclude considerable similarity to other genes. Oligonucleotides were inserted into pSUPER vector by ligation using BglII and HindIII sites as recommended by the manufacturer (Oligoengine, Inc.). Further steps (annealing, linearization, cloning the annealed oligonucleotides into the vector, and transformation of Escherichia coli) were performed according to the manufacturer's protocols. The correctness of all constructs was confirmed by sequencing. On the next step, pSUPER.retro.plasmids were transfected into 293T cells together with a packaging plasmid pCLEco (Imgenex, San Diego, CA) using FUGENE-HD transfection reagent (Roche). Transfection into 293T cells was performed following the manufacturer's protocol. The cells (105/ml) were split into 60-mm plates with Dulbecco's modified Eagle's medium and grown overnight. Before transfection the media was changed to a fresh one. DNA was incubated with FUGENE-HD (ratio 3:2, 30 min, room temperature) to form a complex. Each mixture contained 1.5 μg of pSUPER-plasmid DNA and 0.5 μg of pCLeo DNA. After incubation the mixture was added to cells in the media containing fetal bovine serum without antibiotics. In 48 h the fluorescence was analyzed using the Bio-Rad Microradians Plus confocal system coupled to a Nikon Eclipse inverted microscope TE300 (Melville, NY). The efficiency of transfection was ∼50%. The media from the 293T cells containing the virus together with 10 μg/ml of Polybrene (Millipore Corporation, Billerica, MA) were used for the infection of RGC-5. After 24 h of growth the efficiency of infection determined as described above was ∼30%. Because pSUPER plasmid contained green fluorescent protein encoding nucleotide sequence, we used flow cytometry (BD-FACSAria Cell Sorting System, BD Biosciences) to enrich the population of cell containing siRNA.

Full paper   Login or join for free to view the full paper.

Reviews

pSUPER.retro.neo+gfp vector- Syn G (exon 3) siRNA from Oligoengine has not yet been reviewed for this experiment

We'd love it if you would be the first to write a review!

Discussion

Discussion

5 years ago

Author: A.C.Burton United Kingdom

Multiple gene silencing using ShRNA

Hello, can someone here help me? I am trying to silence e-selectin and ICAM-1 in endothelial cells. I would like to know if this is possible using shRNA

Share your thoughts or question with experts in your field by adding a discussion!

Papers

Check out relevant papers found by Labettor's AI that are relevant for performing shRNA gene silencing Mouse - RGC-5 Syn G (Exon 3) using pSUPER.retro.neo+gfp vector- Syn G (exon 3) siRNA from Oligoengine.

View full paper   Login or join for free to view the full paper.

Manufacturer protocol

Download the product protocol from Oligoengine for pSUPER.retro.neo+gfp vector- Syn G (exon 3) siRNA below.

Download PDF Download manufacturer protocol

Videos

Check out videos that might be relevant for performing shRNA gene silencing Mouse - RGC-5 Syn G (Exon 3) using pSUPER.retro.neo+gfp vector- Syn G (exon 3) siRNA from Oligoengine. Please note that these videos are representative and steps or experiment specific processes must be kept in mind to expect desired results.

We haven't found any additional videos for this experiment / product combination yet.

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms