Wound healing assay cell type human

- Found 8535 results

Get tips on using LC3A/B Antibody to perform Autophagy assay cell type - MCF7

Products Cell Signaling Technology LC3A/B Antibody

Get tips on using Anti-mTOR antibody to perform Autophagy assay cell type - HepG2

Products Abcam Anti-mTOR antibody

Get tips on using Anti-LC3 pAb to perform Autophagy assay cell type - A549

Products MBL international corporation Anti-LC3 pAb

Get tips on using Guava Cell Cycle Reagent for Flow Cytometry to perform Cell cycle assay human - OVCAR-5

Products Merck Millipore Guava Cell Cycle Reagent for Flow Cytometry

Get tips on using Guava Cell Cycle Reagent for Flow Cytometry to perform Cell cycle assay human - THP-1

Products Merck Millipore Guava Cell Cycle Reagent for Flow Cytometry

Get tips on using Guava Cell Cycle Reagent for Flow Cytometry to perform Cell cycle assay human - MCF-7

Products Merck Millipore Guava Cell Cycle Reagent for Flow Cytometry

Get tips on using Guava Cell Cycle Reagent for Flow Cytometry to perform Cell cycle assay human - SH-SY5Y

Products Merck Millipore Guava Cell Cycle Reagent for Flow Cytometry

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human PC3 (human prostate cancer cell line) HSPA5 (GRP78)

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Differentiation of Human PSC into Neural progenitor cells

Get tips on using Click-iT™ Plus EdU Alexa Fluor™ 488 Flow Cytometry Assay Kit to perform Cell cycle assay human - OVCAR-5

Products Thermo Fisher Scientific Click-iT™ Plus EdU Alexa Fluor™ 488 Flow Cytometry Assay Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms