Protein Expression Eukaryotic cells Drosophila S2

- Found 7061 results

Get tips on using IRIS9 Prestained Protein Ladder(15 to 180 kDa) to perform Protein Ladder Prestained

Products BIO-HELIX IRIS9 Prestained Protein Ladder(15 to 180 kDa)

Proteins Protein tag Detection of biotinylated proteins

Proteins Protein tag Purification of phosphorylated proteins

Get tips on using Anti-Clara Cell Secretory Protein Antibody to perform Flow cytometry Anti-bodies Mouse - CCSP

Products Sigma-Aldrich Anti-Clara Cell Secretory Protein Antibody

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Mouse Pancreatic Acinar cells Atg16l2

Get tips on using LowCell# ChIP kit protein A x16 to perform ChIP Human - HepG2

Products Diagenode LowCell# ChIP kit protein A x16

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Rat hepatic stellate cells

Get tips on using Mouse C Reactive Protein ELISA Kit (PTX1) (ab157712) to perform ELISA Mouse - C-Reactive Protein/CRP

Products Abcam Mouse C Reactive Protein ELISA Kit (PTX1) (ab157712)

Get tips on using Rat Bone Morphogenetic Protein 2 ELISA to perform ELISA Rat - BMP-2

Products Blue Gene Rat Bone Morphogenetic Protein 2 ELISA

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Rat mesenchymal stem cells (rMSC)

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms