Select a Cell type


Site Directed Mutagenesis (SDM) Human

- Found 6002 results

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Human CD14+ cells

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Human aortic endothelial cells

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Human umbilical cord tissue

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Human lung fibroblasts

Get tips on using PE anti-human CD114 (G-CSFR) Antibody to perform Flow cytometry Anti-bodies Human - CD114

Products BioLegend PE anti-human CD114 (G-CSFR) Antibody

Get tips on using PE Mouse Anti-Human CD26 Clone L272 to perform Flow cytometry Anti-bodies Human - CD26

Products BD Biosciences PE Mouse Anti-Human CD26 Clone L272

Get tips on using PE Mouse Anti-Human CD30 Clone BerH8 to perform Flow cytometry Anti-bodies Human - CD30

Products BD Biosciences PE Mouse Anti-Human CD30 Clone BerH8

Get tips on using Monoclonal Mouse Anti-Human Cytokeratin, Clone MNF116 to perform Flow cytometry Anti-bodies Human - Keratin

Products Agilent Technologies Monoclonal Mouse Anti-Human Cytokeratin, Clone MNF116

Get tips on using CD11b Antibody, anti-human, PE, REAfinity™ to perform Flow cytometry Anti-bodies Human - CD11b

Products Miltenyibiotec CD11b Antibody, anti-human, PE, REAfinity™

Get tips on using FITC anti-human CD15 (SSEA-1) Antibody to perform Flow cytometry Anti-bodies Human - CD15

Products BioLegend FITC anti-human CD15 (SSEA-1) Antibody

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms