DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Hello Iam a phd student in pharmacy and i want to know if this technology is suitable to knockout or silencing part of the gas5 gene in BV2 cells please
Get tips on using FuGENE® 6 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat pulmonary artery smooth muscle cell (pPASMC)
Get tips on using SIHK1738 to perform siRNA / miRNA gene silencing Human - MDA-MB-231 PKN3
Get tips on using s4215 to perform siRNA / miRNA gene silencing Human - PANC-1 DNMT1/3b
Get tips on using Anti-Glutamine Synthetase Antibody, clone GS-6 to perform Immunohistochemistry Rat - GS
Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Get tips on using EMBacY#6 to perform Protein Expression Eukaryotic cells - Hi5 mCSF1
Get tips on using Silencer® Select_ MYD88 to perform siRNA / miRNA gene silencing Human - A375 MYD88
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment