Hello, can someone here help me? I am trying to silence e-selectin and ICAM-1 in endothelial cells. I would like to know if this is possible using shRNA
Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that no responses other than those related to the signaling pathway of interest. This can be achieved by selecting a highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzyme such as luciferase.
Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Get tips on using Lipofectamine® 2000 Transfection Reagent to perform siRNA / miRNA gene silencing Human - Primary Endometrial Stromal Cells hsa-miR-542-3p Lipid
Get tips on using GenomONE™-Neo HVJ-E Membrane Fusion Transfection Kit to perform siRNA / miRNA gene silencing Human - U937 MK2 (MAPK Kinase 2) Viral vectors
Get tips on using GenomONE™-Neo HVJ-E Membrane Fusion Transfection Kit to perform siRNA / miRNA gene silencing Human - Jurkat MK2 (MAPK Kinase 2) Viral vectors
Get tips on using heat shock protein family A (Hsp70) member 5 to perform siRNA / miRNA gene silencing Human - PC3 (human prostate cancer cell line) HSPA5 (GRP78)
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment