DNA methylation profiling

- Found 2916 results

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat pulmonary artery smooth muscle cell (pPASMC)

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using FuGENE® 6 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat pulmonary artery smooth muscle cell (pPASMC)

Products Promega FuGENE® 6 Transfection Reagent

Get tips on using FuGENE® HD Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Human pulmonary artery smooth muscle cells (HPASMC)

Products Promega FuGENE® HD Transfection Reagent

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Human pulmonary artery smooth muscle cells (HPASMC)

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using Ambion™ RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE to perform DNA isolation / purification Bacteria - Gram positive Lactobacillus

Products Fisher Scientific Ambion™ RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse Cyanine-CTP

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human Bone marrow

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human Breast tumors

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human U-251

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human Colon adenocarcinoma

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms