siRNA / miRNA gene silencing Human hES cell line H1 (WA01)

- Found 9114 results

Hello Iam a phd student in pharmacy and i want to know if this technology is suitable to knockout or silencing part of the gas5 gene in BV2 cells please

Discussions Bv2 GAS5 gene silencing

Get tips on using Glut1 siRNA and shRNA Plasmids (h) to perform RNA sequencing Human - HT-1376 (urinary bladder cell line)

Products Santa Cruz Biotechnology Glut1 siRNA and shRNA Plasmids (h)

Get tips on using CD74 siRNA and shRNA Plasmids (h) to perform RNA sequencing Human - HT-1376 (urinary bladder cell line)

Products Santa Cruz Biotechnology CD74 siRNA and shRNA Plasmids (h)

Get tips on using Rock-2 siRNA and shRNA Plasmids (h) to perform RNA sequencing Human - HT-1376 (urinary bladder cell line)

Products Santa Cruz Biotechnology Rock-2 siRNA and shRNA Plasmids (h)
Fenozol Product

Get tips on using Fenozol to perform siRNA / miRNA gene silencing Rat - IEC-6 HuR

Products A&A Biotechnology Fenozol
Slc1a2 Product

Get tips on using Slc1a2 to perform siRNA / miRNA gene silencing Rat - Glial cells GLT-1

Products Thermo Fisher Scientific Slc1a2

Get tips on using GenomONE™-Neo HVJ-E Membrane Fusion Transfection Kit to perform siRNA / miRNA gene silencing Human - U937 MK2 (MAPK Kinase 2) Viral vectors

Products Cosmo Bio GenomONE™-Neo HVJ-E Membrane Fusion Transfection Kit

Get tips on using GenomONE™-Neo HVJ-E Membrane Fusion Transfection Kit to perform siRNA / miRNA gene silencing Human - Jurkat MK2 (MAPK Kinase 2) Viral vectors

Products Cosmo Bio GenomONE™-Neo HVJ-E Membrane Fusion Transfection Kit

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Human WA09 hESC

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform siRNA / miRNA gene silencing Human - Primary Endometrial Stromal Cells IGFBP1 (Insuline-like growth factor binding protein-1) Lipid

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms