Wound healing assay cell type human

- Found 8535 results

Get tips on using SQSTM1/p62 (D5E2) Rabbit mAb to perform Autophagy assay cell type - A2780

Products Cell Signaling Technology SQSTM1/p62 (D5E2) Rabbit mAb

Get tips on using SQSTM1/p62 (D1Q5S) Rabbit mAb to perform Autophagy assay cell type - A549

Products Cell Signaling Technology SQSTM1/p62 (D1Q5S) Rabbit mAb

Get tips on using LC3 Antibody (APG8B) (N-term) to perform Autophagy assay cell type - A549

Products Abgent LC3 Antibody (APG8B) (N-term)

Get tips on using Beclin-1 (D40C5) Rabbit mAb to perform Autophagy assay cell type - HepG2

Products Cell Signaling Technology Beclin-1 (D40C5) Rabbit mAb

Get tips on using LC3 Antibody (APG8B) (N-term) to perform Autophagy assay cell type - HepG2

Products Abgent LC3 Antibody (APG8B) (N-term)

Get tips on using Annexin V-FITC Apoptosis Kit to perform Apoptosis assay cell type - K562

Products Biovision Annexin V-FITC Apoptosis Kit

Get tips on using Autophagy/Cytotoxicity Dual Staining Kit to perform Autophagy assay cell type - Macrophages

Products Cayman Chemicals Autophagy/Cytotoxicity Dual Staining Kit

Cellular assays Cell line authentication Human iPSC cells derived from peripheral blood mononuclear cells

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media human umbilical mesenchymal stem cells (hUMSCs) differentiation into osteogenic cells

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Differentiation of Human iPSCs into Basal Forebrain cholinergic neurons (BFCN)

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms