miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
Get tips on using AllPrep DNA/RNA/Protein Mini Kit (50) to perform DNA isolation / purification Tissue - brain
Get tips on using MagAttract 96 DNA Plant Core Kit (24) to perform DNA isolation / purification Plants - Leaves
Get tips on using MethylFlash Methylated DNA 5-mC Quantification Kit to perform DNA quantification Human - WI-38
Get tips on using MethylFlash Methylated DNA 5-mC Quantification Kit to perform DNA quantification Human - HEK 293
Get tips on using MethylFlash Methylated DNA 5-mC Quantification Kit to perform DNA quantification Human - THP 1
Get tips on using 3D-Gene® Mouse miRNA Oligo chip (ver.21) to perform Microarray Gene expression arrays - Mouse liver tissue Cyanine-3-CTP
Get tips on using DNA-Prep Reagents Kit, RUO to perform Cell cycle assay human - HeLa
Get tips on using EZ1 DNA Blood 200 µl Kit (48) to perform DNA isolation / purification Tissue - blood / plasma
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment