Get tips on using β-Galactosidase Reporter Gene Staining Kit to perform Reporter gene assay β-galactosidase substrates - HeLa cervical cancer cells
Get tips on using β-Galactosidase Reporter Gene Staining Kit to perform Reporter gene assay β-galactosidase substrates - rat mesenchymal stem cells (MSCs)
Get tips on using GeneChip® Human Genome U133 Plus 2.0 Array to perform Microarray Gene expression arrays - Rhesus monkey brain tissue Biotin
Get tips on using TransMessenger Transfection Reagent (0.5 ml) to perform siRNA / RNAi /miRNA transfection Mouse - Primary cortical and hippocampal cell
The estimation of DNA methylation level heavily depends on the complete conversion of non-methylated DNA cytosines. It is crucial to ensure complete conversion of non-methylated cytosines in DNA. Therefore, it is important to incorporate controls for bisulfite reactions, as well as to pay attention to the appearance of cytosines in non-CpG sites after sequencing, which is an indicator of incomplete conversion.
Get tips on using Mouse Gene Expression v2 4x44K Microarray Kit to perform Microarray Gene expression arrays - Mouse liver tissue Cyanine-3-CTP
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Get tips on using TaqMan® MicroRNA Reverse Transcription Kit to perform siRNA / RNAi /miRNA transfection Mouse - Glomerular Mesangial cells polymer / lipid
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment