Protein expression and purification Mammalian cells HeLa

- Found 9527 results

Cells are sourced from various tissues to grow them in in-vitro conditions. Therefore, cell specific nutrients are important for their survival, maintenance and growth. Determining the appropriate cell culture media is a challenge if you are growing a cell line or a microorganism for the first time. Established cell lines, primary cells, stem cells, bacteria and Yeast all require varied nutrients from basic to complex. Based on the cell type, one can easy find what media and nutrients your peers have used before you try to reinvent the wheel.

Cell culture media Mammalian cell culture media RAOSMC

Cells are sourced from various tissues to grow them in in-vitro conditions. Therefore, cell specific nutrients are important for their survival, maintenance and growth. Determining the appropriate cell culture media is a challenge if you are growing a cell line or a microorganism for the first time. Established cell lines, primary cells, stem cells, bacteria and Yeast all require varied nutrients from basic to complex. Based on the cell type, one can easy find what media and nutrients your peers have used before you try to reinvent the wheel.

Cell culture media Mammalian cell culture media PPAEC

Cells are sourced from various tissues to grow them in in-vitro conditions. Therefore, cell specific nutrients are important for their survival, maintenance and growth. Determining the appropriate cell culture media is a challenge if you are growing a cell line or a microorganism for the first time. Established cell lines, primary cells, stem cells, bacteria and Yeast all require varied nutrients from basic to complex. Based on the cell type, one can easy find what media and nutrients your peers have used before you try to reinvent the wheel.

Cell culture media Mammalian cell culture media RBMVEC

The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.

RNA RNA isolation / purification Tissue Mouse Kidney

The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.

RNA RNA isolation / purification Tissue Human Lung

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse Cyanine-CTP

Get tips on using pLEXSY-hyg-2-hAm to perform Protein Expression Eukaryotic cells - Iranian lizard Leishmania cells recombinant human amelogenin

Products Mojgan BANDEHPOUR, Dept. of Biotechnology, School of Medicine, pLEXSY-hyg-2-hAm

The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.

RNA RNA isolation / purification Tissue Human Lymph node

The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.

RNA RNA isolation / purification Tissue Rat Spinal cord
pMJS205 Product

Get tips on using pMJS205 to perform Protein Expression Prokaryotic cells - E. coli S. cerevisiae SOX Erv1p

Products Robyn Roth, Biosciences, Council for Scientific and Industrial R pMJS205

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms