Get tips on using HiPerFect Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - A-10 Cationic lipid based
Get tips on using HiPerFect Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - H9c2 Cationic and neutral lipids
Get tips on using TurboFect Transfection Reagents to perform siRNA / RNAi /miRNA transfection Rat - H9c2 Cationic and neutral lipids
Get tips on using TransIT-TKO Transfection Reagent to perform siRNA / RNAi /miRNA transfection Mouse - Primary Splenocytes Polymer / lipid
Get tips on using Lipofectamine® 2000 Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - AR42J Lipid based
Get tips on using Lipofectamine® 2000 Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - IEC-6 Lipofectamine
Get tips on using Lipofectamine® 2000 Transfection Reagent to perform siRNA / RNAi /miRNA transfection Mouse - HeLa cells Lipofectamine
Get tips on using β-Gal Reporter Gene Assay, chemiluminescent to perform Reporter gene assay β-galactosidase substrates - MIA PaCa-2
Get tips on using HTRA2 MISSION shRNA Lentiviral Transduction Particles HtrA serine peptidase 2 to perform shRNA gene silencing Mouse - FL83B HtrA2
Reporter gene assays are designed to test the regulation of the expression of a gene of interest. This is usually done by linking the promoter of the gene of interest with a gene such as a firefly luciferase, which can be easily detected by addition of luciferin that leads to an enzymatic reaction to produce luminescence. The enzymatic reaction can be correlated to the expression of the gene of interest. Another luciferase gene that can be used is Renilla luciferase. For an appropriate luciferase assay: 1. the reporter should express uniformly in all cells, 2. specifically respond to effectors that the assay intends to monitor, 3. have low intrinsic stability to quickly reflect transcriptional dynamics. It is important to have an equal number of cells plated in each testing condition to avoid any incorrect readouts. Reporter assays could be single or dual reporter assays. The reporter could be both luciferases. Most dual-luciferase assays involve adding two reagents to each sample and measuring luminescence following each addition. Adding the first reagent activates the first luciferase reporter reaction; adding the second reagent extinguishes first luciferase reporter activity and initiates the second luciferase reaction. Dual-luciferase assays have some advantages, including 1. reduces variability, 2. reduces background, 3. normalizes differences in transfection efficiencies between samples.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment