A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.
Get tips on using pSilencer™ 4.1-CMV neo to perform shRNA gene silencing Human - SiHa AEG-1
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.
Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.
Get tips on using GATA-1 shRNA Plasmids (h) to perform shRNA gene silencing Human - TF‐1 GATA‐1
Reporter gene assays are designed to test the regulation of the expression of a gene of interest. This is usually done by linking the promoter of the gene of interest with a gene such as a firefly luciferase, which can be easily detected by addition of luciferin that leads to an enzymatic reaction to produce luminescence. The enzymatic reaction can be correlated to the expression of the gene of interest. Another luciferase gene that can be used is Renilla luciferase. For an appropriate luciferase assay: 1. the reporter should express uniformly in all cells, 2. specifically respond to effectors that the assay intends to monitor, 3. have low intrinsic stability to quickly reflect transcriptional dynamics. It is important to have an equal number of cells plated in each testing condition to avoid any incorrect readouts. Reporter assays could be single or dual reporter assays. The reporter could be both luciferases. Most dual-luciferase assays involve adding two reagents to each sample and measuring luminescence following each addition. Adding the first reagent activates the first luciferase reporter reaction; adding the second reagent extinguishes first luciferase reporter activity and initiates the second luciferase reaction. Dual-luciferase assays have some advantages, including 1. reduces variability, 2. reduces background, 3. normalizes differences in transfection efficiencies between samples.
Get tips on using Purified Rat Anti-Mouse CD31 to perform Immunohistochemistry Mouse - CD31
Get tips on using Biotin Rat Anti-Mouse CD24 to perform Immunohistochemistry Mouse - CD24
Get tips on using Mouse/Rat Neuropilin-1 Antibody to perform Immunohistochemistry Mouse - Nrp1
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment