DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.
Get tips on using Image-IT™ LIVE Green Reactive Oxygen Species Detection Kit, for microscopy to perform ROS assay cell type - H9c2 rat cardiomyocytes
Get tips on using LC3A/B (D3U4C) XP® Rabbit mAb (Alexa Fluor® 488 Conjugate) #13082 to perform Autophagy assay cell type - RAW 264.7
Get tips on using ROS-ID® Total ROS/Superoxide detection kit to perform ROS assay cell type - A549 human adenocarcinomic human alveolar basal epithelial cells
Get tips on using ApopTag® Fluorescein In Situ Apoptosis Detection Kit to perform TUNEL assay cell type - A549, NCI-H460, H1299 human lung cancer cells
Get tips on using FragEL™ DNA Fragmentation Detection Kit, Colorimetric - TdT Enzyme to perform TUNEL assay cell type - A127, U87MG, U251MG, T98G human glioblastoma cells
Get tips on using Mouse ANGPTL3 ELISA to perform ELISA Mouse - Angiopoietin-Like 3 (AngptL3)
A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.
DNA damage assay is a standard method for determining in-vivo/in-vitro genotoxicity by measuring the breaks in the DNA chain of animal and plant cells. Initial DNA damage leads to cell cycle arrest and, at the final stages, leads to induction of senescence or cell death (apoptosis, necrosis, autophagy, or mitotic catastrophe). Detection of DNA damage from mild to moderate to severe is challenging when studying genotoxicity in the pool of cells. It is favorable to use DNA damage assay kits available for prominent identification of the extent of damage in the analysis.
DNA damage assay is a standard method for determining in-vivo/in-vitro genotoxicity by measuring the breaks in the DNA chain of animal and plant cells. Initial DNA damage leads to cell cycle arrest and, at the final stages, leads to induction of senescence or cell death (apoptosis, necrosis, autophagy, or mitotic catastrophe). Detection of DNA damage from mild to moderate to severe is challenging when studying genotoxicity in the pool of cells. It is favorable to use DNA damage assay kits available for prominent identification of the extent of damage in the analysis.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment