rna-isolation-purification-tissue-mouse-spleen

- Found 7463 results

A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.

Cellular assays Angiogenesis assay mouse spleen-derived EPCs

Get tips on using NucleoSpin® RNA to perform RNA isolation / purification Tissue - Rat Spleen

Products Macherey Nagel NucleoSpin® RNA

The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.

RNA RNA isolation / purification Tissue Human Lung

Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA

RNA RNA isolation / purification Tissue Rat Blood / Serum / Plasma / Buffy coat

Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA.

RNA RNA isolation / purification Tissue Human Blood / Serum / Plasma / Buffy coat

The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.

RNA RNA isolation / purification Tissue Rat Spinal cord

The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.

RNA RNA isolation / purification Tissue Human Lymph node

RNA RNA isolation / purification Tissue Human Colon

RNA RNA isolation / purification Tissue Human Saliva

Get tips on using PureLink™ RNA Mini Kit to perform RNA isolation / purification Tissue - Human Spleen

Products Thermo Fisher Scientific PureLink™ RNA Mini Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms