Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.
Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.
Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.
Get tips on using APC Rat Anti-Mouse Ly-6G and Ly-6C to perform Flow cytometry Anti-bodies Mouse - Ly6C/Gr-1/Ly6G
Get tips on using PE Mouse Anti-Human CD26 Clone L272 to perform Flow cytometry Anti-bodies Human - CD26
Get tips on using PE Mouse Anti-Human CD30 Clone BerH8 to perform Flow cytometry Anti-bodies Human - CD30
Get tips on using Monoclonal Mouse Anti-Human Cytokeratin, Clone MNF116 to perform Flow cytometry Anti-bodies Human - Keratin
Get tips on using A2B5 Antibody, anti-human/mouse/rat, APC to perform Flow cytometry Anti-bodies Human - A2B5
Get tips on using Monoclonal Anti-Laminin antibody produced in mouse to perform Western blotting Laminin subunit Beta-2
Get tips on using Monoclonal Anti-ATG5 antibody produced in mouse to perform Autophagy assay cell type - CaCo-2
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment