Get tips on using APC-Cy™7 Mouse Anti-Human CD3 to perform Flow cytometry Anti-bodies Human - CD3
Get tips on using Anti-LGR5 mouse mAb, clone OTI2A2, PE conjugated to perform Flow cytometry Anti-bodies Human - LGR5
Get tips on using Alexa Fluor® 647 Mouse Anti-Human CD24 to perform Flow cytometry Anti-bodies Human - CD24
Get tips on using Purified Mouse Anti-Beclin Clone 20/Beclin (RUO) to perform Autophagy assay cell type - NIH-3T3
Get tips on using Purified Mouse Anti-Beclin Clone 20/Beclin (RUO) to perform Autophagy assay cell type - THP 1
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.
Get tips on using Purified Mouse Anti-SV40 Large T Antigen Clone PAb 101 (RUO) to perform Immunohistochemistry Mouse - SV40
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment