DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.
DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.
DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.
DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.
DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.
DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.
Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA.
Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.
Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.
Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment