FACS CD14 Mouse Human

- Found 5376 results

Get tips on using Anti-Human CD3 PE-Cyanine7 to perform Flowcytometry CD3 - Mouse / IgG1, kappa Human PE-Cyanine7

Products eBioscience Anti-Human CD3 PE-Cyanine7

Get tips on using Anti-Human CD284 (TLR4) to perform Flowcytometry TLR4 (CD284) - Mouse / IgG1, kappa Human Brilliant violet 421

Products eBioscience Anti-Human CD284 (TLR4)

Get tips on using Mouse ICAM1 ELISA Kit (CD54) (ab100688) to perform ELISA Mouse - ICAM-1/CD54

Products Abcam Mouse ICAM1 ELISA Kit (CD54) (ab100688)

Get tips on using p62 (human) polyclonal antibody to perform Immunohistochemistry Mouse - p62

Products Enzo Life Sciences p62 (human) polyclonal antibody

Get tips on using Mouse Reg1 Antibody to perform Immunohistochemistry Mouse - Reg1

Products R&D system, Minneapolis, MN, USA Mouse Reg1 Antibody

Get tips on using Mouse Prolactin ELISA to perform ELISA Mouse - PRL

Products Raybiotech Mouse Prolactin ELISA

Get tips on using Mouse Adiponectin ELISA to perform ELISA Mouse - Adiponectin

Products Merck Millipore Mouse Adiponectin ELISA

Get tips on using Mouse Epidermal Growth Factor Receptor (EGFR) ELISA Kit to perform ELISA Mouse - EGFR

Products MyBioSource.com Mouse Epidermal Growth Factor Receptor (EGFR) ELISA Kit

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Mouse pericytes

Get tips on using Mouse Von Willebrand Factor A2 ELISA Kit (ab208980) to perform ELISA Mouse - vWF-A2

Products Abcam Mouse Von Willebrand Factor A2 ELISA Kit (ab208980)

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms