Site Directed Mutagenesis (SDM) Human Insertion IMR-32

- Found 6881 results

Get tips on using QuikChange Site-Directed Mutagenesis Kit, 10 Rxn to perform AAA for reviews

Products Agilent Technologies QuikChange Site-Directed Mutagenesis Kit, 10 Rxn

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human IMR-90 CDC7

Get tips on using Anti-Collagen Type VII Antibody, clone 32,-VII to perform Immunohistochemistry Collagen VII [II-32] - Mouse Human -NA-

Products Millipore Anti-Collagen Type VII Antibody, clone 32,-VII
s15827 Product

Get tips on using s15827 to perform siRNA / miRNA gene silencing Human - IMR-90 CDC7

Products Thermo Fisher Scientific s15827

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation hATCB

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation SOX2

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation ESR1

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation REPRIMO

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation IL1RN

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation MASPIN

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms